One-Pot Synthesis of β , β -Disubstituted α , β -Unsaturated Carbonyl Compounds

Masaharu Sugiura,* Yasuhiko Ashikari, and Makoto Nakajima

Graduate School of Ph[ar](#page-4-0)maceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan

S Supporting Information

[AB](#page-4-0)STRACT: $TiCl₄-promoted$ aldol reaction of ketones as aldol acceptors followed by elimination of the titanoxy group from the Ti-aldolates affords β , β -disubstituted α , β -unsaturated carbonyl compounds in a one-pot procedure. The use of additives, such as DMF, N,N,N′,N′-tetramethylethylenediamine, and pyridine, in the elimination step was found to be important.

 $β, β$ -Disubstituted $α, β$ -unsaturated carbonyl compounds are useful compounds themselves and as starting materials for the construction of tetra- or trisubstituted carbon stereogenic centers at the carbonyl β -position. The total syntheses of various natural products have been accomplished starting from these functional compounds.¹ We also reported the Lewis basecatalyzed enantioselective conjugate reduction of a $\beta_1\beta_2$ disubstitut[ed](#page-4-0) α , β -unsaturated ketone (enone) with trichlorosilane.²

The combination of the Horner−Wadsworth−Emmons reactio[n](#page-5-0) of ketones and subsequent transformation to enones via Weinreb amides is widely used to prepare *acyclic* $β, β$ disubstituted enones.³ Sulfenylation/desulfenylation of ketones,⁴ addition of organometallic reagents to β -amino-, β alkylthio- or β β β -alkoxyenones,⁵ conjugate addition of organometal[li](#page-5-0)c reagents to ynones, 6 rearrangement of tertiary propargylic alcohols or their [ac](#page-5-0)etates, 7 and oxidative rearrangement [o](#page-5-0)f tertiary allylic alcohols⁸ have also been utilized. Recently, Donohoe and co-worke[rs](#page-5-0) reported an efficient stereoselective method based on [th](#page-5-0)e Mizoroki−Heck reaction of vinyl Weinreb amides.⁹ However, these precedents all require several reaction steps.

The aldol addition t[o](#page-5-0) simple ketones followed by dehydration (the aldol condensation) may offer a straightforward strategy for the preparation of β , β -disubstituted α , β unsaturated carbonyl compounds from readily available starting materials; however, this has not yet been systematically studied because of the relatively low reactivity of ketones as electrophiles (aldol acceptors), its propensity for the retroaldol reaction, and generation of undesired self- and/or cross-aldol products. In one of the few examples, Tanabe and co-workers reported highly useful diastereoselective $TiCl₄/Bu₃N-promoted$ aldol reactions between two ketones or between phenyl esters/ S-phenyl thioesters and ketones.^{10−13} They also reported the synthesis of a muscone precursor 10c and dihydrojasmone 11b by dehydration of the correspon[din](#page-5-0)g [i](#page-5-0)solated aldol products. Inspired by their work, we envi[sag](#page-5-0)ed that elimination [of](#page-5-0) the titanoxy group directly from the Ti-aldolate intermediate (without isolation of the aldol product) might be feasible by

optimizing the reaction conditions. Here, we report the one-pot synthesis of β , β -disubstituted α , β -unsaturated carbonyl compounds by using additives in the elimination step.

Initially, we investigated the reaction of methyl isopropyl ketone as the aldol donor and acetophenone as the aldol acceptor (Table 1). According to Tanabe's procedure with

Table 1. Screening of Additives^a

^aThe reaction was carried out by using methyl isopropyl ketone (1.0 mmol), TiCl₄ (1.1 mmol), Bu₃N (1.2 mmol), acetophenone (1.0 mmod), and additive in dichloromethane (2 mL). ^b Isolated yield.
 mmod), and additive in dichloromethane (2 mL). ^b Isolated yield. Conferenced by ¹H NMR spectroscopic analysis of the crude product.
 $\frac{dN}{dN}$ Methyl-2-pyrrolidone $\frac{e_{NN}}{N}$ DV. Dimethylpropyleneurea $\frac{f_{NN}}{N}$ N N N' N-Methyl-2-pyrrolidone. ^eN,N'-Dimethylpropyleneurea. ^{*f}N,N,N',N'*-</sup> Tetramethylethylenediamine.

Received: May 30, 2015 Published: August 18, 2015

slight modification of the amounts of substrate and reagent, 10 methyl isopropyl ketone (1.0 equiv) in dichloromethane was treated successively with TiCl₄ (1.1 equiv) and Bu₃N ([1.2](#page-5-0) equiv) at −78 °C, and acetophenone (1.0 equiv) was added to the mixture. After 30 min, formation of the aldol product was confirmed by TLC analysis. If the reaction was quenched at this stage, the aldol product was obtained in 96% yield. However, when the temperature was increased to rt^{14} without workup to facilitate the elimination, the desired enone was obtained only in 18% yield (Table 1, entry 1). [A](#page-5-0) large amount of acetophenone was generated, which indicated progress of the retroaldol reacti[on. We r](#page-0-0)easoned that the Ti-enolate was regenerated because Ti strongly coordinated to the carbonyl oxygen atom in the Ti-aldolate intermediate. To cleave the coordinate bond, DMF was added as a ligand of titanium in the elimination step. As expected, the yield of the enone increased (Table 1, entries 2−4); DMF (5 equiv) provided the best result. N-Methyl-2-pyrrolidone (NMP) and N,N′-dimethylpro[pyleneure](#page-0-0)a (DMPU) were inferior alternatives to DMF (Table 1, entries 5 and 6).¹⁵ In addition to coordination to titanium, deprotonation of a carbonyl α -proton would facilitat[e the](#page-0-0) [el](#page-0-0)imination step. [Th](#page-5-0)us, tertiary amines were examined as additives. Monoamines were moderately effective (Table 1, entries $7-9$),¹⁶ whereas N,N,N',N'-tetramethylethylenediamine (TMEDA), which can bidentately coordinate to [titanium](#page-0-0), afforded a g[oo](#page-5-0)d yield (Table 1, entry 10). The use of larger amounts of TMEDA (2.0 equiv) decreased the yield.¹⁷ Next, pyridine and its derivat[ives wer](#page-0-0)e examined (Table 1, entries 11−14).¹⁸ Unlike aliphatic amines, larger amounts (5.[0](#page-5-0) equiv) of pyridine gave higher yield than lower amo[unts \(3.0](#page-0-0) equiv) (entiries [1](#page-5-0)1 and 12). Although the E selectivity was lowered, significant rate enhancement was observed with pyridine and α picoline. Thus, we identified DMF, TMEDA, and pyridine as effective additives for the elimination step. It should also be noted that the titanium residue, which precipitates naturally or on addition of diethyl ether and hexane, can be removed by simple filtration through a Celite pad without aqueous workup. After evaporation, the filtrate can be directly purified by column chromatography on silica gel.

One-pot reactions of other substrates were investigated with these additives (Table 2). The reaction tolerated a variety of aromatic and aliphatic ketones. In most cases, pyridine resulted in a shorter reaction time and higher yield but lower E selectivity than DMF or TMEDA.^{19,20} In most cases, high E/Z selectivity (>95:5) was observed with DMF and TMEDA additives. When propiophenone [was u](#page-5-0)sed as aldol acceptor for the reaction with methyl isopropyl ketone, low E/Z selectivities were observed (Scheme 1).

On the basis of the above observation for the E/Z selectivity, we speculated that the stereochemical pathway would be different for the reaction with pyridine versus that with DMF or TMEDA. To verify this hypothesis, several control experiments were performed (Table 3). First, TMEDA or pyridine, and then (E)- or (Z)-enone (Ar = p-ClC₆H₄, isolated by chromatography after one-pot rea[ction\) w](#page-2-0)ere added to a mixture of $TiCl₄$, $Bu₃N$ and water in dichloromethane.²¹ With TMEDA (Table 3, entries 1 and 2), the E/Z ratio became 97:3 irrespective of the geometry of the starting enone. [Ho](#page-5-0)wever, with pyridi[ne \(Table](#page-2-0) 3, entries 3 and 4), the E/Z ratio of the starting enone was almost retained. Thus, the E/Z selectivity is cont[rolled](#page-2-0) [th](#page-2-0)ermodynamically in the former case and kinetically in the latter case. Second, hydrogen chloride, a possible side product of the one-pot reaction, also caused isomerization (Table 3,

^aThe reaction was carried out by using $R^{1}COCH_{3}$ (0.5 mmol), TiCl₄ (1.1 mmol) , Bu₃N (1.2 mmol) , R²COCH₃ (0.5 mmol) , and additive [DMF (2.5 mmol), TMEDA (0.5 mmol), or pyridine (2.5 mmol)] in dichloromethane (1 mL) . b Isolated yield. c D: DMF (5.0 equiv); T: TMEDA (1.0 equiv) ; P: pyridine (5.0 equiv) . determined by H NMR spectroscopic analysis of the crude product. ^eThe aldol step was carried out at −45 °C for 1.0 h.

Scheme 1. Propiophenone as Aldol Acceptor

entry 5), which suggested that the excess of pyridine (5.0 equiv) trapped HCl and prevented the isomerization (equilibration).

The one-pot reaction was also applicable to the preparation of $β, β$ -disubstituted $α, β$ -unsaturated carboxylic acid derivatives (Scheme 2). The reaction of S-phenyl thioacetate²² with acetophenone using TMEDA or pyridine in the elimination step afforded the desired unsaturated thioester in go[od](#page-5-0) yield [with](#page-2-0) [good](#page-2-0) E selectivity. For the reaction with methyl isopropyl ketone, pyridine provided a much higher yield than TMEDA. In addition, the unsaturated thioester product (100% E, isolated by column chromatography) could be transformed to the corresponding N-methyl amide, aldehyde, or ethyl ketone by

8831

Table 3. Control Experiments^a

 a Additive and enone were successively added to a mixture of TiCl_4 (1.1 equiv), Bu_3N (1.2 equiv) and water (1.0 equiv) in dichloromethane. $b_{\text{Determined by}}^{(112)}$ by 111 NMR spectroscopic analysis of the crude product. "Hydrogen chloride in Et_2O was used instead of a mixture of $TiCl₄$, $Bu₃N$, and water.

treatment with MeNH_2^{23} diisobutylaluminum hydride $(DIBAL-H)²⁴$ and EtZnI/palladium catalyst,²⁵ respectively.²⁶ It should be noted that th[ese](#page-5-0) products are difficult to obtain from the [one](#page-5-0)-pot reaction of the corresp[on](#page-5-0)ding carbo[nyl](#page-5-0) compounds (i.e., N-methylacetamide, acetaldehyde, and 2 butanone).

The one-pot method was applied to the one-pot synthesis of simple natural products, ar-atlantone²⁷ and α -atlantone²⁸ (Scheme 3). The Ti-aldol reaction of mesityl oxide with the required ketones followed by elimi[na](#page-5-0)tion with pyridi[ne](#page-5-0) provided ar-atlantone and α -atlantone in good yield and E selectivity.

In summary, we have demonstrated a one-pot method to synthesize β,β-disubstituted α,β-unsaturated carbonyl compounds by sequential $TiCl₄-promoted$ aldol reaction to simple ketones and base-promoted elimination.

EXPERIMENTAL SECTION

General Methods. Dry dichloromethane (dehydrated) was stored over 4-Å MS prior to use. Titanium (IV) chloride was distilled under reduced pressure. Tributylamine, N,N,N′,N′-Tetramethylethylenediamine (TMEDA), and pyridine were distilled from CaH₂. N,N-Dimethylformamide (DMF) was stored over 4 Å MS prior to use. All

other solvents and chemicals were purified based on standard procedures. Melting points (mp) were uncorrected. ${}^{1}H$ and ${}^{13}C\{{}^{1}H\}$ NMR spectra were measured in CDCl₃ with 400 or 600 MHz spectrometer. Tetramethylsilane (TMS) (δ = 0 ppm) and CDCl₃ (δ = 77.0 ppm) served as internal standards for ${}^{1}H$ and ${}^{13}C$ NMR, respectively. Infrared spectra were recorded on an FT-IR spectrometer. High-resolution mass spectra were recorded on a double-focusing magnetic-sector mass analyzer operating in a FAB mode. Thin-layer chromatography (TLC) was visualized with UV light, phosphomolybdic acid and/or anisaldehyde. Column chromatography was performed using silica gel (spherical, neutral, 63–210 nm). The reactions under anhydrous conditions were carried out using ovenand heating gun-dried glassware with a rubber septum and a magnetic stirring bar under argon atmosphere.

Typical Procedure: One-Pot Synthesis of β,β-Disubstituted **Enone (Table 1, Entry 12).** TiCl₄ (2.82 M in CH₂Cl₂; 0.39 mL) and Bu3N (0.29 mL, 1.2 mmol) were successively added to a stirred solution of methyl isopropyl ketone (87.0 mg, 1.0 mmol) in CH_2Cl_2 (2.0 m[L\) at](#page-0-0) −78 °C. After 30 min, acetophenone (119.7 mg, 1.0 mmol) was added to the mixture at −78 °C. Formation of the aldol product was detected by TLC analysis after 1 h. Then pyridine (0.40 mL, 5.0 mmol) was added at -78 °C and the reaction mixture was warmed to room temperature. After being stirred for 5 h, the reaction mixture was diluted with $Et₂O$ (5 mL) and hexane (5 mL). The mixture was filtered through a Celite pad and the filtrate was concentrated. The residue was purified by column chromatography on silica gel (hexane/acetone = $30:1$) to give 2-methyl-5-phenylhex-4-en-3-one (163.8 mg, 87% yield, $E/Z = 86:14$).

(E)-2-Methyl-5-phenylhex-4-en-3-one.²⁹ TLC R_f 0.38 (hexane/ acetone = 10:1, stained dark green with anisaldehyde). $^1\rm H$ NMR (400) MHz) δ = 1.17 (d, J = 7.0 Hz, 6[H\)](#page-5-0), 2.55 (s, 3H) 2.73 (sept, J = 7.0 Hz, 1H), 6.55 (s, 1H), 7.33−7.43 (m, 3H), 7.44−7.58 (m, 2H).

 (Z) -2-Methyl-5-phenylhex-4-en-3-one.²⁹ TLC R_f 0.35 (hexane/ acetone = 10:1, stained dark green with anisaldehyde). $^1\rm H$ NMR (400) MHz) δ = 0.99 ([d,](#page-5-0) J = 6.9 Hz, 6H), 2.18 (d, J = 1.4 Hz, 3H), 2.45 (sept, J = 6.9 Hz, 1H), 6.20 (q, J = 1.4 Hz, 1H), 7.13−7.20 (m, 2H), 7.29−7.36 (m, 3H).

 $(E)-1,3-Diphenylbut-2-en-1-one.^{3f} According to the typical$ procedure, the reaction of acetophenone (57.7 mg) and acetophenone (60.1 mg) at rt for 2 h gave 1,3-dip[he](#page-5-0)nylbut-2-en-1-one (75.1 mg, 67%, $E/Z = 87:13$). TLC R_f 0.30 (hexane/AcOEt = 10:1, stained green with anisaldehyde). 1 H NMR (400 MHz) δ = 2.60 (d, J = 0.9 Hz, 3H), 7.17 (q, J = 0.9 Hz, 1H), 7.37−7.45 (m, 3H), 7.47 (t, J = 7.8 Hz, 2H), 7.53−7.59 (m, 3H), 7.98−8.02 (m, 2H).

(Z)-1,3-Diphenylbut-2-en-1-one.^{3f} TLC R_f 0.24 (hexane/AcOEt = 10:1, stained green with anisaldehyde). ¹H NMR (400 MHz) δ = 2.32 (s, 3H), 6.69 (brs, 1H), 7.14−7.[27](#page-5-0) (m, 5H), 7.34 (t, J = 7.8 Hz, 2H), 7.44 (t, $J = 7.8$ Hz, 1H), 7.83 (d, $J = 7.8$ Hz, 2H).

 $(E)-1-(4-Methoxyphenyl)-3-phenylbut-2-en-1-one.^{3f} Accordingly, the following property holds: \[2ex] \begin{align*} \mathbf{d}_1 &= \mathbf{d}_2 + \mathbf{d}_3 + \mathbf{d}_4 \end{align*}$ ing to the typical procedure, the reaction of 4-methoxyacetophenone (150.2 mg) and acetophenone (123.2 mg) at rt for 2 h [g](#page-5-0)ave 1-(4 methoxyphenyl)-3-phenylbut-2-en-1-one (136.2 mg, 54%, E/Z = 90:10). TLC R_f 0.36 (hexane/AcOEt = 7:1, stained yellow green with anisaldehyde). ¹H NMR (400 MHz) δ = 2.57 (d, J = 1.4 Hz, 3H), 3.88 (s, 3H), 6.95 (d, J = 8.7 Hz, 2H), 7.12 (q, J = 1.4 Hz, 1H), 7.38– 7.45 (m, 3H), 7.55−7.59 (m, 2H), 8.00 (d, J = 8.7 Hz, 2H).

(E)-1-(4-Chlorophenyl)-3-phenylbut-2-en-1-one. $TiCl_4$ (3.0 M CH_2Cl_2 ; 0.18 mL) and Bu₃N (0.14 mL, 0.6 mmol) were successively added to a stirred solution of 4-chloroacetophenone (71.2 mg, 0.46 mmol) in CH₂Cl₂ (1.0 mL) at -78 °C. After 30 min, acetophenone (60.9 mg, 0.51 mmol) was added to the mixture at −78 °C. After being stirred at −45 °C for 1 h, pyridine (0.20 mL, 2.5 mmol) was added at −45 °C and the reaction mixture was warmed to room temperature. After being stirred for 2 h, the reaction mixture was diluted with $Et₂O$ (5 mL) and hexane (5 mL). The mixture was filtered through a Celite pad and the filtrate was concentrated. The residue was purified by column chromatography on silica gel (hexane/ $ACOE = 30/1$) to give 1-(4-chlorophenyl)-3-phenylbut-2-en-1-one (102.7 mg, 87%, $E/Z = 92.8$). TLC R_f 0.42 (hexane/AcOEt = 7:1, stained orange with anisaldehyde). IR (film) 3061, 1657, 1593, 1211, 1090, 762 cm[−]¹ . 1 H NMR (400 MHz) δ = 2.60 (d, J = 1.4 Hz, 3H), 7.12 (q, J = 1.4 Hz, 1H), 7.40−7.47 (m, 5H), 7.55−7.59 (m, 2H), 7.93 (d, J = 8.2 Hz, 2H). ¹³C NMR (100 MHz) δ = 19.0, 121.4, 126.5, 128.6, 128.8, 129.3, 129.7, 137.6, 138.9, 142.6, 156.0, 190.4. LRMS $(FAB+, CHCl₃+NBA)$ m/z 257 (M + H⁺, 100), 220 (M⁺-Cl, 16), 139 $(ClC_6H_4CO^+, 48)$. HRMS (FAB+, CHCl₃+NBA) Calcd for $C_{16}H_{14}OCl$ (M + H⁺) 257.0733, found 257.0732.

 (E) -3,4-Dimethyl-1-phenylpent-2-en-1-one.⁶ According to the typical procedure, the reaction of acetophenone (115.4 mg) and methyl isopropyl ketone (88.9 mg) at −78 °C [f](#page-5-0)or 2 h gave 3,4 dimethyl-1-phenyl-2-penten-1-one (131.9 mg, 73%, E/Z = 88:12). TLC R_f 0.18 (hexane/CH₂Cl₂ = 2:1, stained orange with anisaldehyde). ¹H NMR (400 MHz) δ = 1.15 (d, J = 7.2 Hz, 6H), 2.17 (s, 3H), 2.49 (sept, J = 7.2 Hz, 1H), 6.74 (s, 1H), 7.43−7.47 (m, 2H), 7.47−7,56 (m, 1H), 7.92 (d, J = 7.2 Hz, 2H).

 (Z) -3,4-Dimethyl-1-phenyl-2-penten-1-one.⁶ TLC R_f 0.24 (hexane/CH₂Cl₂ = 2:1, stained orange with anisaldehyde). ¹H NMR (400 MHz) δ = 1.08 (d, J = 7.0 Hz, 6H[\),](#page-5-0) 1.92 (s, 3H), 3.78 (sept, 1H), 6.61 (s, 1H), 7.40−7.50 (m, 2H), 7.50−7.56 (m, 1H), 7.93 (d, J = 7.3 Hz, 2H).

(E)-1-Cyclopropyl-3-phenylbut-2-en-1-one. According to the typical procedure, the reaction of cyclopropyl methyl ketone (46.2 mg) and acetophenone (60.7 mg) at rt for 1 h gave 1-cyclopropyl-3 phenylbut-2-en-1-one (71.7 mg, 77%, $E/Z = 89:11$). TLC R_f 0.49 (hexane/AcOEt = 10:1, stained dark green with anisaldehyde). IR (ATR) 3008, 1668, 1597, 1574, 1381, 1102, 1094, 974, 895, 760, 693 cm⁻¹. ¹H NMR (600 MHz) δ = 0.89–0.94 (m, 2H), 1.09–1.13 (m, 2H), 2.03−2.08 (m, 1H), 2.54 (d, J = 1.3 Hz, 3H), 6.66 (q, J = 1.3 Hz, 3H), 7.34−7.41 (m, 3H), 7.49−7.52 (m, 2H). ¹³C NMR (150 MHz) δ = 11.2, 18.5, 22.8, 124.9, 126.5, 128.5, 128.9, 142.7, 152.9, 201.0. LRMS (FAB+, CHCl₃+NBA) m/z 187 (M + H⁺, 100), 145 (PhMeC = CHCO⁺, 33). HRMS (FAB+, CHCl₃+NBA) Calcd for $C_{13}H_{15}O$ (M + H+) 187.1123, found 187.1119.

(E)-1-Cyclohexyl-3-phenylbut-2-en-1-one. According to the typical procedure, the reaction of cyclohexyl methyl ketone (60.5 mg) and methyl acetophenone (61.0 mg) at rt for 1 h gave 1 cyclohexyl-3-phenylbut-2-en-1-one (94.1 mg, 86%, $E/Z = 85:15$). TLC R_f 0.59 (hexane/acetone = 10:1, stained dark green with anisaldehyde). IR (ATR) 2926, 2852, 1678, 1598, 1573, 1446, 1145, 966, 757, 694 cm⁻¹. ¹H NMR (400 MHz) δ = 1.15–1.46 (m, 5H), 1.60−1.72 (m, 1H), 1.77−1.85 (m, 2H), 1.86−1.94 (m, 2H), 2.40− 2.49 (m, 1H), 2.53 (d, J = 1.4 Hz, 3H), 6.54 (q, J = 1.4 Hz, 1H), 7.34– 7.42 (m, 3H), 7.46–7.51 (m, 2H). ¹³C NMR (100 MHz) δ = 18.4, 25.8, 25.9, 28.6, 52.1, 123.6, 126.4 128.5, 128.9, 142.8, 154.0, 204.6. LRMS (FAB+, CHCl₃+NBA) m/z 229 (M + H⁺, 96), 145 (PhMeC = CHCO⁺, 100). HRMS (FAB+, CHCl₃+NBA) Calcd for $C_{16}H_{21}O$ (M + H+) 229.1592, found 229.1591.

(E)-2,2-Dimethyl-5-phenylhex-4-en-3-one. According to the typical procedure, the reaction of tert-butyl methyl ketone (49.4 mg) and acetophenone (60.0 mg) at rt for 1 h gave 2,2-dimethyl-5 phenylhex-4-en-3-one (86.3 mg, 87%, $E/Z = 86:14$). TLC R_f 0.47 $(hexane/acetone = 10:1$, stained black with anisaldehyde). IR (ATR) 2966, 1674, 1597, 1573, 1446, 1088, 958, 764, 694 cm^{−1}. ¹H NMR $(400 \text{ MHz}) \delta = 1.21 \text{ (s, 9H)}$, 2.50 $(d, J = 1.4 \text{ Hz}, 3H)$, 6.74 $(q, J = 1.4 \text{ Hz})$ Hz, 1H), 7.34–7.42 (m, 3H), 7.46–7.51 (m, 2H). ¹³C NMR (100 MHz) δ = 18.6, 26.6, 44.2, 120.8, 126,4 128.5, 128.8, 143.2, 154.1, 206.7. LRMS (FAB+, CHCl₃+NBA) m/z 203 (M + H⁺, 61), 145 (PhMeC=CHCO⁺, 100). HRMS (FAB+, CHCl₃+NBA) Calcd for $C_{14}H_{19}O(M + H⁺)$ 203.1436, found 203.1433.

(E)-5-(4-Methoxyphenyl)-2-methylhex-4-en-3-one. According to the typical procedure, the reaction of methyl isopropyl ketone (40.7 mg) and p-methoxyacetophenone (74.1 mg) at rt for 1 h gave 5-(4 methoxyphenyl)-2-methylhex-4-en-3-one (68.7 mg, 67%, $E/Z =$ 82:18). TLC R_f 0.47 (hexane/AcOEt = 7:1, stained dark green with anisaldehyde). IR (film) 2966, 1680, 1593, 1512, 1252, 1180, 829 cm⁻¹. ¹H NMR (400 MHz) δ = 1.16 (d, J = 6.9 Hz, 6H), 2.54 (d, J = 1.4 Hz, 3H), 2.71 (sept, J = 6.9 Hz, 1H), 3.83 (s, 3H), 6.53 (q, J = 1.4 Hz, 1H), 6.90 (d, J = 8.7 Hz, 2H), 7.47 (d, J = 8.7 Hz, 2H). ¹³C NMR (100 MHz) δ = 18.2, 18.5, 42.0, 55.3, 113.8, 121,6 127.8, 134.8, 153.8, 160.4, 205.0. LRMS (FAB+, CHCl₃+NBA) m/z 219 (M + H⁺, 75), 175 (ArMeC=CHCO⁺, 100). HRMS (FAB+, CHCl₃+NBA) Calcd for $C_{14}H_{19}O_2$ $(M + H^+)$ 219.1385, found 219.1384.

(E)-5-(4-Chlorophenyl)-2-methylhex-4-en-3-one. According to the typical procedure, the reaction of methyl isopropyl ketone (41.3 mg) and p-chloroacetophenone (72.8 mg) at rt for 1 h gave 5-(4 chlorophenyl)-2-methylhex-4-en-3-one (70.1 mg, 67%, E/Z = 73:27). TLC R_f 0.57 (hexane/AcOEt = 10:1, stained dark green with anisaldehyde). IR (ATR) 2968, 1682, 1600, 1562, 1489, 1071, 1063, 1011, 967, 821, 770 cm⁻¹. ¹H NMR (400 MHz) δ = 1.15 (d, J = 6.9 Hz, 6H), 2.51 (d, J = 1.4 Hz, 3H), 2.71 (sept, J = 6.9 Hz, 1H), 6.52 (q, $J = 1.4$ Hz, 1H), 7.35 (d, $J = 8.7$ Hz, 2H), 7.42 (d, $J = 8.7$ Hz, 2H). ¹³C NMR (100 MHz) δ = 18.1, 18.2, 41.9, 123.3, 127.6, 128,5 134.8, 141.0, 152.5, 204.7. LRMS (FAB+, CHCl₃+NBA) m/z 223 (M + H⁺, , 97), 179 (ArMeC=CHCO⁺, 100). HRMS (FAB+, CHCl₃+NBA) Calcd for $C_{13}H_{16}OCl (M + H⁺)$ 223.0890, found 223.0895.

 (Z) -5-(4-Chlorophenyl)-2-methylhex-4-en-3-one. TLC R_f 0.49 (hexane/AcOEt = 10:1, stained dark green with anisaldehyde). IR (ATR) 2970, 1689, 1616, 1594, 1490, 1092, 1013, 843, 823, 765 cm⁻¹.
¹H NMP (600 MHz) δ - 1.02 (d, I – 6.9 Hz 6.H) 2.15 (d, I – 1.4 Hz ¹H NMR (600 MHz) δ = 1.02 (d, J = 6.9 Hz, 6H), 2.15 (d, J = 1.4 Hz, 3H), 2.51 (sept, $J = 6.9$ Hz, 1H), 6.24 (q, $J = 1.4$ Hz, 1H), 7.11 (d, $J =$ 8.3 Hz, 2H), 7.30 (d, J = 8.3 Hz, 2H). ¹³C NMR (150 MHz) δ = 18.2, 27.0, 40.8, 125.4, 128.3, 128.4, 133.8, 139.4, 151.2, 204.6. LRMS (FAB +, CHCl₃+NBA) m/z 223 (M + H⁺, 100), 179 (ArMeC=CHCO⁺ , 95). HRMS (FAB+, CHCl₃+NBA) Calcd for $C_{13}H_{16}OCl (M + H⁺)$ 223.0890, found 223.0892.

 (E) -2,5,6,6-Tetramethylhept-4-en-3-one.^{5b} According to the typical procedure, the reaction of methyl isopropyl ketone (40.5 mg) and tert-butyl methyl ketone (48.3 mg) at r[t fo](#page-5-0)r 2 h gave 2,5,6,6 tetramethylhept-4-en-3-one (79.1 mg, 99%, $E/Z = 73:27$). TLC R_f 0.50 (hexane/AcOEt = 10:1, stained black with anisaldehyde). ¹H NMR (400 MHz) δ = 1.09 (s, 9H), 1.12 (d, J = 6.9 Hz, 6H), 2.12 (s, 3H), 2.63 (sept, $J = 6.9$ Hz, 1H), 6.17 (s, 1H).

(E)-2-Methyl-5-phenylhept-4-en-3-one. According to the typical procedure, the reaction of methyl isopropyl ketone (44.1 mg) and propiophenone (69.0 mg) with TMEDA (150 μ L) at rt for 24 h gave 2-methyl-5-phenylhept-4-en-3-one (88.8 mg, 86%, E/Z = 56:44). TLC R_f 0.52 (hexane/AcOEt = 10:1, stained dark green with anisaldehyde). IR (ATR) 2968, 1682, 1595, 1574, 1463, 1445, 1068, 1056, 764, 695. ¹H NMR (600 MHz) δ = 1.06 (t, J = 7.2 Hz, 3H), 1.15 (d, J = 7.2 Hz, 6H), 2.70 (sept, $J = 7.2$ Hz, 1H), 3.04 (q, $J = 7.2$ Hz, 2H), 6.42 (s, 1H), 7.37−7.39 (m, 3H) 7.44−7.46 (m, 2H). 13C NMR (100 MHz) δ = 13.6, 18.4, 24.7, 42.0, 123.0, 126.8, 128.5, 128.8, 141.7, 160.7, 204.8. LRMS (FAB+, CHCl₃+NBA) m/z 203 (M + H⁺, 69), 159 (PhEtC = CHCO⁺, 100), 77 (Ph⁺, 87). HRMS (FAB+, CHCl₃+NBA) Calcd for $C_{14}H_{19}O(M + H⁺)$ 203.1436, found 203.1427.

(Z)-2-Methyl-5-phenylhept-4-en-3-one. R_f 0.45 (hexane/ AcOEt = 10:1, stained dark green with anisaldehyde). IR (ATR) 2968, 1693, 1672, 1618, 1598, 1464, 1442, 1381, 1092, 1013, 832, 765, 697. ¹H NMR (400 MHz) δ = 0.97 (d, J = 7.2 Hz, 6H), 1.05 (d, J = 7.8 Hz, 3H), 2.38−2.52 (m, 3H), 6.15 (s, 1H), 7.10−7.16 (m, 2H) 7.26−7.38 (m, 3H). ¹³C NMR (100 MHz) δ = 12.3, 18.3, 33.2, 40.4, 124.0, 127.2, 127.7, 128.1, 140.5, 157.6, 206.2. LRMS (FAB+, $CHCl₃+NBA$) m/z 203 (M + H⁺, 100), 159 (PhEtC=CHCO⁺ , 100), 77 (Ph⁺, 90), 71 (ⁱPrCO⁺, 85). HRMS (FAB+, CHCl₃+NBA) Calcd for $C_{14}H_{19}O(M + H⁺)$ 203.1436, found 203.1442.

S-Phenyl (E)-3-phenylbut-2-enethioate. According to the typical procedure, the reaction of S-phenyl thioacetate (76.3 mg) and acetophenone (67.2 mg) at rt for 5 h gave S-phenyl 3-phenylbut-2-enethioate (108.3 mg, 85%, $E/Z = 91:9$). TLC R_f 0.57 (hexane/ AcOEt = 10:1, stained pale red with anisaldehyde). mp 63−64 °C. IR (ATR) 3056, 1682, 1597, 1572, 1438, 1047, 936, 833, 735, 690, 566 cm⁻¹. ¹H NMR (400 MHz) δ = 2.55 (d, J = 1.4 Hz, 3H), 6.49 (q, J = 1.4 Hz, 1H), 7.37–7.54 (m, 10H). ¹³C NMR (100 MHz) $\delta = 18.9$, 122.6, 126.6, 128,3 128.6, 129.1, 129.3, 129.5, 134.6, 141.5, 154.1, 187.7. LRMS (FAB+, CHCl₃+NBA) m/z 255 (M + H⁺, 19), 145 (PhMeC=CHCO⁺, 100). HRMS (FAB+, CHCl₃+NBA) Calcd for $C_{16}H_{15}OS \ (M + H^+)$ 255.0844, found 255.0847.

S-Phenyl (E)-3,4-dimethylpent-2-enethioate. According to the typical procedure, the reaction of S-phenyl thioacetate (79.0 mg) and methyl isopropyl ketone (41.0 mg) at rt for 20 h gave S-phenyl 3,4 dimethylpent-2-enethioate (102.5 mg, 97%, $E/Z = 87:13$). TLC R_f 0.62 (hexane/CH₂Cl₂ = 1:1, stained pale red with anisaldehyde). IR (ATR) 2964, 1683, 1616, 1440, 1031, 1023, 883, 830, 729, 688 cm⁻¹.
¹H NMR (400 MHz) δ - 1.09 (d I - 6.9 Hz 6H) 2.11 (s 3H) 2.38 ¹H NMR (400 MHz) δ = 1.09 (d, J = 6.9 Hz, 6H), 2.11 (s, 3H), 2.38 (sept, J = 6.9 Hz, 1H), 6.07 (s, 1H), 7.38−7.46 (m, 5H). 13C NMR (100 MHz) $\delta = 17.6, 20.8, 38.2, 119.7, 128.5, 129.0, 129.1, 134.7,$ 164.8, 187.7. LRMS (FAB+, CHCl₃+NBA) m/z 221 (M + H⁺, 23), 111 ('PrMeC=CHCO⁺, 100). HRMS (FAB+, CHCl₃+NBA) Calcd for $C_{13}H_{17}OS(M + H⁺)$ 221.1000, found 221.1003.

Control Experiments for E/Z Isomerization. Table 3, entry 1 (from E isomer): $TiCl₄$ (3.00 M in $CH₂Cl₂$; 0.12 mL) was added to a stirred solution of H₂O (6.1 μ L, 0.34 mmol) and Bu₃N (0.1 mL, 0.41) mmol) in CH₂Cl₂ (0.68 mL) at −78 °C. After 0.5 [h,](#page-2-0) [TMED](#page-2-0)A (0.05 mL, 0.34 mmol) was added at −78 °C and the reaction mixture was warmed to room temperature. After 0.5 h, (E)-5-(4-chlorophenyl)-2 methylhex-4-en-3-one (76.7 mg, 0.34 mmol, $E/Z = 97:3$) was added to the mixture. After being stirred for 12 h, the reaction mixture was diluted with Et_2O (5 mL) and hexane (5 mL). The mixture was filtered through a Celite pad. The filtrate was concentrated to give the sufficiently pure crude product, which ¹H NMR spectroscopic analysis indicated the E/Z ratio to be 97:3.

Table 3, entry 2 (from Z isomer): Similarly to the above procedure, (Z) -5-(4-chlorophenyl)-2-methylhex-4-en-3-one (6.8 mg, $E/Z =$ 0:100) was treated with the mixture of TiCl₄ (3.00 M CH₂Cl₂; 0.01 mL), H_2O (0.5 μ L), Bu₃N (8.5 μ L) and TMEDA (4.5 μ L) in CH₂Cl₂ $(0.06$ mL) at room temperature for 12 h. The $\rm ^1H$ NMR spectroscopic analysis of the crude product indicated the E/Z ratio to be 97:3.

Transformation of α , β -Unsaturated S-Phenyl Thioester to (E)-N-Methyl-3-phenylbut-2-enamide. According to the reported procedure,²³ 40% MeNH₂ in H₂O (12 μ L, 0.24 mmol) was added over 30 min to a stirred solution of S-phenyl (E)-3,4-dimethylpent-2- enethioate [\(5](#page-5-0)0.9 mg, $E/Z = 100:0$) in MeOH (2.6 mL) at 0 °C. After 2 h, the reaction mixture was concentrated. The residue was gave purified by column chromatography on silica gel (hexane/AcOEt = 10:1) to give (E) -N-methyl-3-phenylbut-2-enamide (30.5 mg, 87%, E / $Z = 100:0$). TLC R_f 0.14 (hexane/AcOEt = 10:1, stained white with anisaldehyde). mp 119−120 °C. IR (ATR) 3251, 3077, 2919, 1651, 1619, 1563, 1447, 1365, 1287, 1234, 875, 764, 689 cm⁻¹. ¹H NMR (600 MHz) δ = 2.55 (d, J = 1.1 Hz, 3H), 2.89 (d, J = 8.7 Hz, 3H), 5.70 $(brs, 1H)$, 6.00 (q, J = 1.1 Hz, 1H), 7.30–7.37 (m, 3H), 7.40–7.43 (m, 2H). ¹³C NMR (150 MHz) δ = 17.6, 26.1, 119.8, 126.1, 128.4, 142.7, 150.5, 167.6. LRMS (FAB+, CHCl₃+NBA) m/z 176 (M + H⁺, 100), 145 (PhMeC=CHCO⁺, 24). HRMS (FAB+, CHCl₃+NBA) Calcd for $C_{11}H_{14}NO (M + H⁺)$ 176.1075, found 176.1077.

Transformation of α , β -Unsaturated S-Phenyl Thioester to (E)-3-Phenylbut-2-enal. DIBAL-H (1.0 M in hexane, 0.30 mL) was added to a stirred solution of S-phenyl (E)-3,4-dimethylpent-2 enethioate (50.4 mg, $E/Z = 100:0$) in methylcyclohexane (2.0 mL) at −78 °C. The reaction mixture was stirred at −78 °C for 0.5 h and quenched with NaOH/H2O/EtOH (0.3 g/1.25 mL/1.75 mL). The mixture was extracted with AcOEt $(3 \times 15 \text{ mL})$. The combined organic layers were washed with brine, dried over $Na₂SO₄$ and concentrated. The residue was purified by column chromatography on silica gel (hexane/AcOEt = 20:1) to give (E) -3-phenylbut-2-enal³⁰ (23.9 mg, 82%, $E/Z = 93:7$). TLC R_f 0.47 (hexane/AcOEt = 10:1,

stained black with anisaldehyde). ¹H NMR (400 MHz) δ = 2.58 (d, J = 1.4 Hz, 3H), 6.40 (dd, J = 7.8, 1.4 Hz, 1H), 7.36−7.48 (m, 3H), 7.50−7.60 (m, 2H), 10.19 (d, J = 7.8 Hz, 1H).

Transformation of α , β -Unsaturated S-Phenyl Thioester to (E)-5-Phenylhex-4-en-3-one. According to the reported procedure with a modification, 25 EtZnI (0.50 M in THF/Et₂O/hexane; 1.2 mL, prepared from diethylzinc and iodine according to the reported procedure³¹) was [add](#page-5-0)ed to a stirred solution of S-phenyl (E) -3,4dimethylpent-2-enethioate (50.9 mg, $E/Z = 100:0$) and $PdCl_2(PPh_3)$ ₂ (14.0 mg, [10](#page-5-0) mol %) in toluene (0.67 mL) at room temperature. After being stirred for 2 h, the reaction mixture was diluted with AcOEt and concentrated. The residue was gave purified by column chromatography on silica gel (hexane/AcOEt = $30:1$) to give (E)-5-phenylhex-4en-3-one^{3f} (31.3 mg, 90%, $E/Z = 100:0$). TLC R_f 0.52 (hexane/AcOEt = 10:1, stained black with anisaldehyde). ¹H NMR (400 MHz) δ = 1.13 (t, J [=](#page-5-0) 7.3 Hz, 3H), 2.55 (d, J = 0.9 Hz, 3H), 2.57 (q, J = 7.3 Hz, 2H), 6.50 (q, J = 0.9 Hz, 1H), 7.33−7.42 (m, 3H), 7.45−7.52 (m, 2H).

Synthesis of ar-Atlantone. According to the typical procedure, the reaction of mesityl oxide (98.4 mg) and p-methylacetophenone (134.2 mg) at rt for 1 h gave ar-atlantone^{27b} (167.2 mg, 78%, $E/Z =$ 91:9). TLC R_f 0.57 (hexane/AcOEt = 7:1, stained black with anisaldehyde). ¹H NMR (CDCl₃) δ = 1.9[2 \(s](#page-5-0), 3H), 2.22 (s, 3H), 2.37 $(s, 3H)$, 2.56 $(s, 3H)$, 6.19 (brs, 1H), 6.49 $(s, 1H)$, 7.18 $(d, J = 8.0 \text{ Hz})$, 2H), 7.40 (d, $J = 8.0$ Hz, 2H).

Synthesis of α -Atlantone. According to the typical procedure, the reaction of mesityl oxide (51.2 mg) and 1-(4-methyl-3-cyclohexen-1-yl)ethanone^{28b} (66.0 mg) at rt for $2h$ gave α -atlantone^{28c} (74.4 mg, 71%, $E/Z = 90:10$). TLC R_f 0.56 (hexane/AcOEt = 10:1, stained black with anisalde[hyd](#page-5-0)e). ¹H NMR (CDCl₃) $\delta = 1.62$ (s, 3[H\),](#page-5-0) 1.65−2.20 (m, 7H), 1.85 (s, 3H), 2.13 (s, 6H), 5.41 (brs, 1H), 6.06 (brs, 1H), 6.08 (brs, 1H).

■ ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.5b01217.

¹H NMR spectra of the known compounds (the products in [Table 1, the prod](http://pubs.acs.org)ucts in entries 1−4, 7−[9, and 25](http://pubs.acs.org/doi/abs/10.1021/acs.joc.5b01217) of Table 2, (E) -3-phenylbut-2-enal and (E) -5-phenylhex-4-en[-3-one in](#page-0-0) Scheme 2, ar-atlantone and α -atlantone in [Scheme](#page-1-0) 3). ${}^{1}H$ and ${}^{13}C$ NMR spectra of the new compounds [\(the produ](#page-2-0)cts in entries 5, 6 and 10−24 of [Table 2, th](#page-2-0)e products in Scheme 1, and the thioester products in Scheme 2). (PDF)

■ A[UTHOR](#page-1-0) IN[FORMATI](#page-2-0)O[N](http://pubs.acs.org/doi/suppl/10.1021/acs.joc.5b01217/suppl_file/jo5b01217_si_001.pdf)

Corresponding Author

*E-mail: msugiura@kumamoto-u.ac.jp.

Notes

The auth[ors declare no competing](mailto:msugiura@kumamoto-u.ac.jp) financial interest.

■ ACKNOWLEDGMENTS

This work was partially supported by JSPS KAKENHI Grant Number 23590009 and 26460010.

■ REFERENCES

(1) For selected examples, see: (a) Salomon, R. G.; Lal, K.; Mazza, S. M.; Zarate, E. A.; Youngs, W. J. J. Am. Chem. Soc. 1988, 110, 5213. (b) Salomon, R. G.; Mazza, S. M.; Lal, K. J. Org. Chem. 1989, 54, 1562. (c) Li, S.; Chiu, P. Tetrahedron Lett. 2008, 49, 1741. (d) Esumi, T.; Mori, T.; Zhao, M.; Toyota, M.; Fukuyama, Y. Org. Lett. 2010, 12, 888. (e) Esumi, T.; Yamamoto, C.; Fukuyama, Y. Synlett 2013, 24, 1845. (f) Ciesielski, J.; Gadon, V.; Frontier, A. J. J. Org. Chem. 2013, 78, 9541. (g) McGrath, K. P.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2014,

53, 1910. (h) Radomkit, S.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2014, 53, 3387.

(2) Sugiura, M.; Sato, N.; Kotani, S.; Nakajima, M. Chem. Commun. 2008, 4309.

(3) (a) Wadsworth, W. S., Jr.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733. (b) Appella, D. H.; Moritani, Y.; Shintani, R.; Ferreira, E. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9473. (c) Tsuchiya, Y.; Hamashima, Y.; Sodeoka, M. Org. Lett. 2006, 8, 4851. (d) Kanazawa, Y.; Tsuchiya, Y.; Kobayashi, K.; Shiomi, T.; Itoh, J.; Kikuchi, M.; Yamamoto, Y.; Nishiyama, H. Chem. - Eur. J. 2006, 12, 63. (e) Lu, S.-M.; Bolm, C. Chem. - Eur. J. 2008, 14, 7513. (f) Nishikawa, Y.; Yamamoto, H. J. Am. Chem. Soc. 2011, 133, 8432.

(4) (a) Trost, B. M.; Salzmann, T. N. J. Am. Chem. Soc. 1973, 95, 6840. (b) Trost, B. M.; Salzmann, T. N.; Hiroi, K. J. Am. Chem. Soc. 1976, 98, 4887.

(5) (a) Kashima, C.; Yamamoto, Y. Heterocycles 1982, 19, 1211. (b) Dieter, R. K.; Silks, L. A. J. Org. Chem. 1986, 51, 4687. (c) Bartoli, G.; Marcantoni, E.; Petrini, M.; Sambri, L. Chem. - Eur. J. 1996, 2, 913.

(d) Lipshutz, B. H.; Amorelli, B.; Unger, J. B. J. Am. Chem. Soc. 2008, 130, 14378.

(6) Tanaka, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 8862.

(7) (a) Sugawara, Y.; Yamada, W.; Yoshida, S.; Ikeno, T.; Yamada, T. J. Am. Chem. Soc. 2007, 129, 12902. (b) Yu, M.; Li, G.; Wang, S.; Zhang, L. Adv. Synth. Catal. 2007, 349, 871. (c) Engel, D. A.; Dudley, G. B. Org. Lett. 2006, 8, 4027. (d) Egi, M.; Yamaguchi, Y.; Fujiwara, N.; Akai, S. Org. Lett. 2008, 10, 1867. (e) Pennell, M. N.; Turner, P. G.; Sheppard, T. D. Chem. - Eur. J. 2012, 18, 4748.

(8) (a) Shibuya, M.; Ito, S.; Takahashi, M.; Iwabuchi, Y. Org. Lett. 2004, 6, 4303. (b) Li, J.; Tan, C.; Gong, J.; Yang, Z. Org. Lett. 2014, 16, 5370.

(9) Baker, D. B.; Gallagher, P. T.; Donohoe, T. J. Tetrahedron 2013, 69, 3690.

(10) For titanium-promoted aldol reactions between simple ketones, see: (a) Yoshida, Y.; Hayashi, R.; Sumihara, H.; Tanabe, Y. Tetrahedron Lett. 1997, 38, 8727. (b) Yoshida, Y.; Matsumoto, N.; Hamasaki, R.; Tanabe, Y. Tetrahedron Lett. 1999, 40, 4227. (c) Tanabe, Y.; Matsumoto, N.; Higashi, T.; Misaki, T.; Itoh, T.; Yamamoto, M.; Mitarai, K.; Nishii, Y. Tetrahedron 2002, 58, 8269.

(11) For titanium-promoted aldol reactions of phenyl esters or Sphenyl thioesters and simple ketones, see: (a) Tanabe, Y.; Matsumoto, N.; Funakoshi, S.; Manta, N. Synlett 2001, 1959. (b) Nagase, R.; Matsumoto, N.; Hosomi, K.; Higashi, T.; Funakoshi, S.; Misaki, T.; Tanabe, Y. Org. Biomol. Chem. 2007, 5, 151. Tanabe and his coworkers also reported synthesis of tri- and tertrasubstitued α , β unsaturated esters by cross-coupling reactions of enol tosylates, see: (c) Nakatsuji, H.; Ueno, K.; Misaki, T.; Tanabe, Y. Org. Lett. 2008, 10, 2131. (d) Nakatsuji, H.; Nishikado, H.; Ueno, K.; Tanabe, Y. Org. Lett. 2009, 11, 4258. (e) Nishikado, H.; Nakatsuji, H.; Ueno, K.; Nagase, R.; Tanabe, Y. Synlett 2010, 2087. (f) Ashida, Y.; Sato, Y.; Suzuki, T.; Ueno, K.; Kai, K.; Nakatsuji, H.; Tanabe, Y. Chem. - Eur. J. 2015, 21, 5934.

(12) For other aldol additions to simple ketones, see: (a) Nozaki, H.; Oshima, K.; Takai, K.; Ozawa, S. Chem. Lett. 1979, 379. (b) Tsuji, J.; Yamamda, T.; Kaito, M.; Mandai, T. Bull. Chem. Soc. Jpn. 1980, 53, 1417. (c) Allan, J. F.; Henderson, K. W.; Kennedy, A. R. Chem. Commun. 1999, 1325. (d) Cergol, K. M.; Turner, P.; Coster, M. J. Tetrahedron Lett. 2005, 46, 1505. (e) Cergol, K. M.; Jensen, P.; Turner, P.; Coster, M. J. Chem. Commun. 2007, 1363. (f) Alcoberro, S.; Gómez-Palomino, A.; Solà, R.; Romea, P.; Urpí, F.; Font-Bardia, M. Org. Lett. 2014, 16, 584. For Mukaiyama aldol reactions to ketones, see: (g) Ishihara, K.; Hiraiwa, Y.; Yamamoto, H. Synlett 2001, 1851. (h) Yanai, H.; Yoshino, Y.; Takahashi, A.; Taguchi, T. J. Org. Chem. 2010, 75, 5375.

(13) We have reported the first enantioselective cross-aldol reaction between simple ketones, see: (a) Aoki, S.; Kotani, S.; Sugiura, M.; Nakajima, M. Chem. Commun. 2012, 48, 5524. For the first enantioselective aldol addition of silyl ketene acetals to simple ketones, see: (b) Denmark, S. E.; Fan, Y. J. Am. Chem. Soc. 2002,

, 4233. (c) Denmark, S. E.; Fan, Y.; Eastgate, M. D. J. Org. Chem. , 70, 5235. For a review of catalytic enantioselective aldol additions to ketones, see: (d) Adachi, S.; Harada, T. Eur. J. Org. Chem. , 22, 3661.

(14) Lower temperatures than rt (even 0 $^{\circ}$ C) for the elimination step significantly decreased the reaction rate and did not improve the E/Z selectivity.

(15) NMP has been used as additive for $TiCl₄-promoted$ asymmetric aldol reactions, see: (a) Crimmins, M. T.; She, J. Synlett 2004, 1371. (b) Sreenithya, A.; Sunoj, R. B. Org. Lett. 2012, 14, 5752.

(16) When the reaction was initiated with Bu_3N (2.2 equiv) at beginning, the yield of the desired enone was decreased to 52% yield.

(17) In this case, the desired enone, the aldol product (5-hydroxy-2 methyl-5-phenylhexan-3-one), and a self-aldol product (3-hydroxy-1,3 diphenylbutan-1-one) were obtained in 59, 15, and 21% yields, respectively, according to the ¹H NMR analysis of the crude product. When TMEDA (1.0 equiv) was used (Table 1, entry 10), no self-aldol product but the aldol product was obtained in 3% yield along with the desired enone. These results indicate that the excess amount of TMEDA suppressed the elimination [and pro](#page-0-0)moted the retro aldol reaction.

(18) Pyridine and DMAP have been used as effective additives for acetylation of aluminium hemiacetals (intermediates of DIBAL-H reduction of esters), see: (a) Dahanukar, V. H.; Rychnovsky, S. D. J. Org. Chem. 1996, 61, 8317. (b) Kopecky, D. J.; Rychnovsky, S. D. J. Org. Chem. 2000, 65, 191.

(19) In Table 2, entry 7, β , γ -unsaturated ketone 3,4-dimethyl-1phenylpent-3-en-1-one was obtained in 38% yield, which indicated that DMF did not deprotonate the carbonyl α -proton. In Table 2, entry 10, [ring-open](#page-1-0)ed product (E)-7-chloro-2-phenylhept-2-en-4-one was obtained in 57% yield.

(20) The configurations of the known enone products were [assigned](#page-1-0) on comparison with the literature data, and those of the unknown enones were determined by analogy.

(21) Water was added to reproduce the reaction conditions after the aldol reaction followed by the elimination of water.

(22) The reaction of phenyl acetate resulted in self-Claisen condensation. Tanabe et al. did not employ phenyl acetate and Sphenyl thioacetate for their $\rm TiCl_4\mbox{-}promoted$ aldol reaction, see ref $11.$ (23) Bae, H. Y.; Sim, J. H.; Lee, J.-W.; List, B.; Song, C. E. Angew. Chem., Int. Ed. 2013, 52, 12143.

(24) Corey, E. J.; Huang, H.-C. Tetrahedron Lett. 1989, 30, 5235.

(25) (a) Fukuyama, T.; Tokuyama, H. Aldrichimica Acta 2004, 37, 87. (b) Tokuyama, H.; Yokoshima, S.; Yamashita, T.; Fukuyama, T. Tetrahedron Lett. 1998, 39, 3189. (c) Zhou, G.; Lim, D.; Coltart, D. M. Org. Lett. 2008, 10, 3809.

(26) To the best of our knowledge, these functional group transformations have not been applied to β , β -disubstituted α , β unsaturated S-phenyl thioesters before. Especially, our modification for the DIBAL-H reduction (use of methylcyclohexane as the solvent and workup under basic conditions) was found to be important for retaining the geometry of the starting material.

(27) Synthesis of ar-atlantone: (a) Sakai, T.; Miyata, K.; Ishikawa, M.; Takeda, A. Tetrahedron Lett. 1985, 26, 4727. (b) Strunz, G. M.; Ya, L. Can. J. Chem. 1992, 70, 1317.

(28) Synthesis of α -atlantone: (a) Crawford, R. J.; Erman, W. F.; Broaddus, C. D. J. Am. Chem. Soc. 1972, 94, 4298. (b) Babler, J. H.; Olsen, D. O.; Arnold, W. H. J. Org. Chem. 1974, 39, 1656. (c) Andrianome, M.; Delmond, B. J. Org. Chem. 1988, 53, 542.

(29) Barbee, T. R.; Albizati, K. F. J. Org. Chem. 1991, 56, 6764.

(30) Takaya, J.; Sasano, K.; Iwasawa, N. Org. Lett. 2011, 13, 1698.

(31) Charette, A. B.; Gagnon, A.; Fournier, J.-F. J. Am. Chem. Soc. 2002, 124, 386.